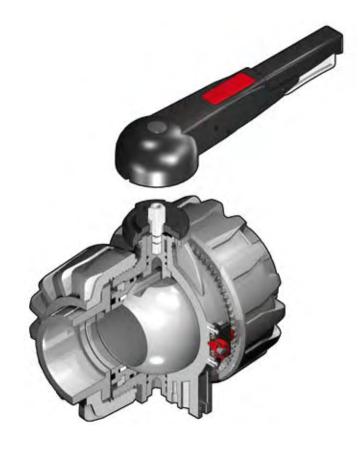


Двухходовой шаровой кран DualBlock®

VKD ΧΠΒΧ 75÷110

Все данные настоящей публикации носят справочный характер. Гарантии предоставляются в соответствии с международными нормами и правилами. Компания FIP оставляет за собой право на внесение изменений в номенклатуру продукции, приведенную в данном каталоге.



Шаровой кран DualBlock®

Компания FIP разработала шаровой кран типа **VK Dual Block**®, который стал новым эталоном качества для кранов из термопластиковых материалов. VKD представляет собой шаровой кран, отвечающий самым жестким требованиям по применению в промышленности. Бесперебойная работа - основной принцип, взятый за основу при разработке крана. Этот принцип достигнут благодаря специальному механизму блокировки накидных гаек крана.

- Диапазон диаметров: DN65 DN100
- Типы соединений: клеевое, резьбовое, фланцевое соединение
- Рабочие давление до 16 бар при температуре 20°C. Дополнительная информация приведена на следующей странице
- Запатентованная система **Dual Block**®: новая система блокировки, обеспечивающая закрепление накидных гаек даже в сложных рабочих условиях (например, при вибрациях или температурных колебаниях)
- Простой демонтаж и быстрая замена уплотнительных колец и прокладок шара без применения дополнительных приспособлений
- Система уплотнения SEAT STOP, возможность выполнения микрорегулировки осевых усилий с помощью соответствующей гайки и системы блокировки
- Возможность демонтажа труб при нахождении крана в закрытом положении
- Возможноть комплектации поворотной ручки дополнительным блокирующим механизмом HIPVC
- Возможность установки пневматических и/или электрических приводов при помощи модульных адапторов из PP-GR; отверстия в соответствии с ISO 5211 F03- F04- F05- F07.
- Для получения более подробной информации зайдите на сайт: www.glynwed.ru или www.fipnet.it

Данные, приведенные в настоящем издании, являются достоверными. Компания FIP не берет на себя никакой ответственности в отношении данных, которые не следуют непосредственно из международных стандартов. Компания FIP оставляет за собой право вносить любые изменения.

Условные обозначения

d Внешний диаметр трубы, мм

DN Номинальный внутренний диаметр, мм

PN Номинальное давление, бар

(максимальное рабочее давление при температуре воды 20°C)

g Вес в граммах

U Количество отверстий

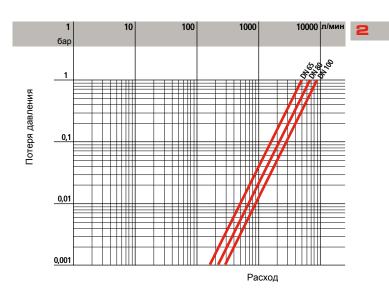
s Толщина стенок трубы, мм

SDR Соотношение диаметра и толщины стенки

ХПВХ Поливинилхлорид хлорированный

НІРVC Высокопрочные ПВХ

ЕРDM Этилен-пропилен каучук


FPM (FKM) Фторэластомер (витон)

РТГЕ Политетрафторэтилен

ПЭ Полиэтилен

Технические характеристики

80 100 -20 20 40 60 бар 16 14 Рабочее давление 12 10 _8 _6 4 2 0 Рабочая температура

3			1	
	d	75	90	110
	DN	65	80	100
	Nm (PN16)	25-30	40-45	60-65
	Nm (PN10)	20-25	30-35	50-55
	Nm (PN6)	15-20	20-25	35-40

	1		I	4
d	75	90	110	
DN	65	80	100	
k _{V100}	5250	7100	9500	

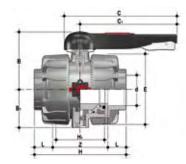
- График изменения давления в зависимости от температуры для воды и жидкостей, в отношении которых ХПВХ классифицируется как ХИМИЧЕСКИ СТОЙКИЙ (см. «Справочник по химической стойкости»). Во всех других случаях требуется соответствующее снижение номинального давления PN. (25 лет, с учетом фактора безопасности)
- График потери давления
- Крутящий момент
- Коэффициент потока k_{V100} Под коэффициентом потока k_{V100} подразумевается расход Q, выраженный в литрах в минуту (температура воды 20° C), при котором происходит потеря напора $\Delta p = 1$ бар для определенного положения клапана.

Размеры

Шаровые краны FIP доступны в описанных ниже модификациях. Их соединения соответствуют следующим стандартам:

Клеевое соединение: ISO 727, EN ISO 15493, ASTM F439

Для соединения с трубами, соответствующими стандартам EN ISO 15493, DIN 8079/8080, ASTM D1785/76

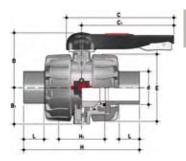

Резьбовое соединение: ASTM 2464/76, ASA ANSI B1.20.1

Фланцевое соединение: ISO 2084, UNI 7442, DIN 8063, ASA ANSI B.16.5 150

VKDIC

ШАРОВОЙ КРАН Dual Block®

с гладкими муфтовыми окончаниями под клеевое соединение, метрическая серия

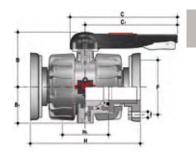


d	DN	PN		L	Н	Н ₁	E	В	В ₁	C	C ₁	g	
75 90	65 80	16 16	147 168	44 51	235 270	133 149		164 177		225 327	175 272	4750 7838	
110	100	16	186	61	308	167	238	195	129	385	330	12137	

VKDDC

ШАРОВОЙ КРАН Dual Block®

с втулочными окончаниями под клеевое соединение, метрическая серия

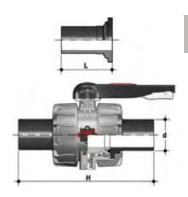


d	DN	PN	L	н	H ₁	E	В	B ₁	С	C ₁	g
75	65	16	44	284	133	164	164	87	225	175	4789
90		16		300	149		177	105	327	272	
110	100	16	61	340	167	238	195	129	385	330	11931

VKDOC

ШАРОВОЙ КРАН Dual Block®

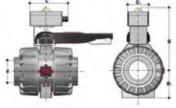
с фиксированными фланцами отверстия в соотв. с UNI 2223 PN 10/16, DIN 2501 Фланцевое соединение в соответствии с EN 558-1


d	DN	PN	н	H ₁	В	B ₁	С	C ₁	f	F	g
75	65	16	290	133	164	87	327	175	17	145	6413
90	80	16	310	149	177	105	327	272	17	160	9669
110	100	16	350	167	195	129	385	330	17	180	14697

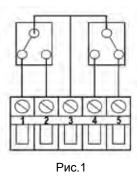
VKD XΠΒΧ 75÷110

Комплектующие

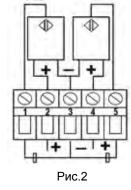
CVDE


Патрубок из ПЭ 100 Для электромуфтовой или стыковой сварки SDR 11

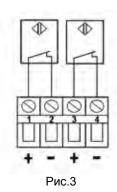
Артикул	н	L	DN	d
CVDE11075	356	111	65	75
CVDE11090	390	118	80	9 0
CVDE11110	431	132	100	110


VKD-MS

MS представляет собой блок электромеханических или индуктивных концевых выключателей, которые используются для дистанционного определения положения клапана (открыт — закрыт). Монтаж блока может быть произведен на клапане, который уже установлен на трубопроводе. Для получения более подробной информации обратитесь в отдел технического обслуживания.

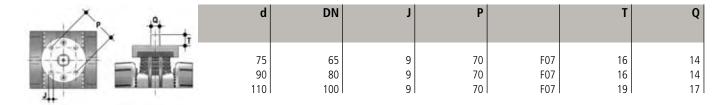


d	DN	В	В ₁		C ₁
75		266	87	150	80
90 110	80 100	279 297	105 129	150 150	80 80


Артикул			DN	+ d
Namur	Индуктивный	Электромеханический		
FKMS1N	FKMS1I	FKMS1M	65 ÷ 100	75 ÷ 110

Электромеханические

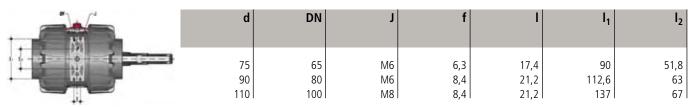
Индуктивные


Namur*

^{*} для использования с амплификатором

Автоматические приводы

По запросу кран может поставляться в комплекте с автоматическими приводами. Кроме того, существует возможность применения стандартных пневматических и/или электрических приводов, монтаж которых осуществляется с помощью адаптера, отверстия которого соответствуют стандарту ISO 5211 F07 (см. комплектующие).


Крепление скобами и опорами

Все механические и автоматические краны требуют закрепления скобами или опорами. Опоры должны выдерживать вес самого крана, а также компенсировать нагрузки, возникающие при открытии и закрытии.

Краны типа VKD оснащены встроенными опорами, которые обеспечивают крепление непосредственно к корпусу крана без применения дополнительных приспособлений.

Следует помнить, что при креплении кран становится мертвой точкой и на него действуют концевые нагрузки. В местах, где предусмотрены повторяющиеся температурные циклы, необходимо обеспечить отсутствие температурных расширений на других частях трубопровода, чтобы предотвратить возникновение опасных перегрузок на деталях крана.

Установка на трубопроводе

- 1) Открутите накидные гайки (13) и наденьте их на участки трубы.
- 2) Приклейте соединительные детали (12) к участкам трубы. Для выполнения соединения надлежащим образом ознакомьтесь с соответствующими инструкциями в руководстве по монтажу.
- 3) Разместите клапан между соединительными деталями (12) и закрутите гайки с помощью соответствующего ключа.
- 4) Заблокируйте гайки посредством вращения кнопки (27) по часовой стрелке, как показано на рисунке 1

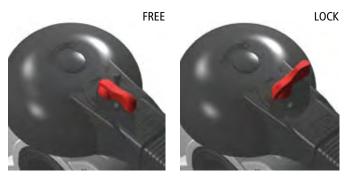
рис. 1

Система **DUAL BLOCK**® представляет собой новую запатентованную систему, разработанную компанией FIP, которая позволяет фиксировать в предварительно установленном положении накидные гайки шаровых кранов.

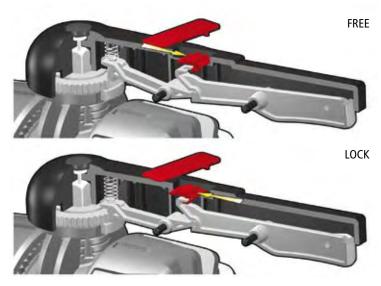
Пружинный механизм позволяет фиксировать накидные гайки и предотвращает их раскручивание в процессе эксплуатации (например, при вибрациях или температурных колебаниях).

FREE (РАЗБЛОКИРОВАТЬ)

В положении FREE: гайки клапана могут вращаться как по часовой, так и против часовой стрелки.


LOCK (ЗАБЛОКИРОВАТЬ)

В положении LOCK: гайки клапана заблокированы в предварительно заданном положении.


В случае использования летучих жидкостей (например, перекиси водорода (H2O2) или гипохлорита натрия (NaClO)) рекомендуется обращаться в технический отдел для получения информации о безопасности. При испарении такие жидкости могут стать причиной появления опасного избыточного давления в зоне между корпусом и шаром.

Установка на трубопроводе

Благодаря многофункциональной ручке и фиксатору, расположенному на рукоятке, можно выполнять поворот на 0 – 90° и пошаговый поворот с фиксацией в 12 промежуточных положениях, а также полную блокировку. Ручка может быть заблокирована в любом из двенадцати положений простым нажатием на кнопку управления FREE-LOCK. Кроме того, возможна установка замка на ручку для защиты устройства от непредусмотренного открытия/закрытия.

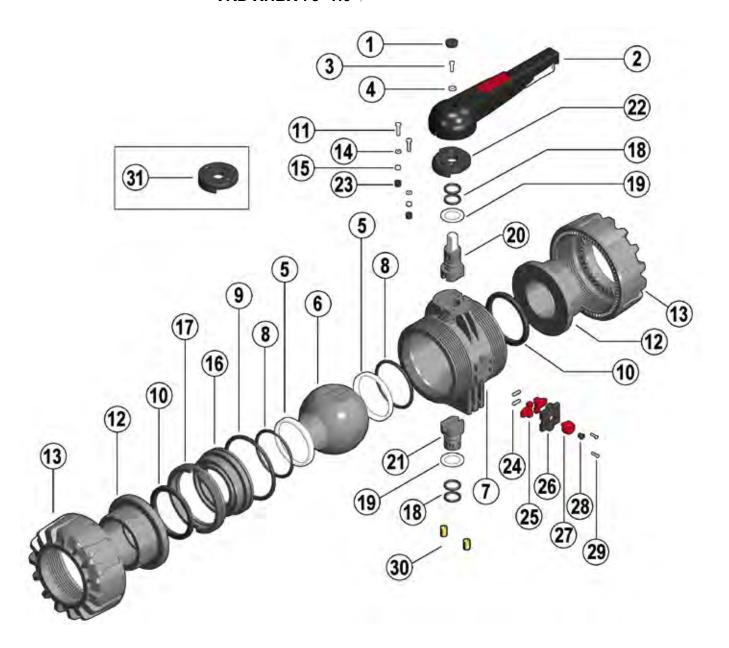
DN 65

DN 80-100

Разборка крана

- 1) Отключите клапан (обеспечьте отсутствие давления).
- 2) Разблокируйте гайки путем вращения кнопки (27) против часовой стрелки.
- 3) Открутите гайки (13) и снимите корпус (7) сбоку.
- 4) Установите кран в положение «открыто».
- 5) Снимите предохранительную заглушку (1) и открутите винт (3) с шайбой (4).
- 6) Снимите рукоятку (2).
- 7) Извлеките винты (11) и шайбу (22) из корпуса (7).
- 8) Вставьте два выступа соответствующего ключа в отверстия стопорного кольца (17), поворачивая его против часовой стрелки, чтобы снять вместе с опорой шара (16).
- 9) Нажмите на шар (6), стараясь не поцарапать его, а затем достаньте шар из корпуса.
- 10) Нажмите на верхний шток (20) по направлению к внутренней стороне крана, чтобы он вышел из корпуса, и достаньте нижний шток (21). Затем снимите антифрикционные шайбы (19).
- 11) Все уплотнительные кольца извлекаются из соответствующих гнезд, как показано на рисунке.

Сборка крана


- 1) Все уплотнительные кольца вставляются в соответствующие гнезда, как показано на рисунке.
- 2) Наденьте шайбы (19) на штоки (20-21) и вставьте штоки в соответствующие гнезда с внутренней стороны корпуса.
- 3) Вставьте уплотнение из РТГЕ (5) в гнездо корпуса (7) и опоры (16).
- 4) Установите шар (6).
- 5) Вставьте в корпус опору (16), жестко закрепленную на стопорном кольце (17), и прикрутите ее по до конца, используя соответствующее приспособление, поставляемое в комплекте.
- 6) Установите шайбу (22) с зубчатой рейкой на корпус и закрепите винты (11), шайбы (14) и гайки(15).
- 7) Установите ручку (2) на шток.
- 8) Закрутите винт (3) с шайбой (4) и наденьте предохранительную заглушку (1).
- 9) Вставьте муфты (12) и гайки (13), при этом следите за тем, чтобы уплотнительные кольца для торцевого уплотнения (10) оставались в своих гнездах.
- 10) Заблокируйте гайки поворотом кнопки (27) по часовой стрелке.

Примечание:

При выполнении операций по установке рекомендуется смазать резиновые прокладки. В этом случае следует помнить, что минеральные масла не могут использоваться для смазки по причине их агрессивности по отношению к уплотнениям из EPDM.

Предупреждение:

Избегайте резких закрытий и обеспечьте защиту клапана от случайного включения.

Поз.	Наименование компонентов	Материал изготовления	Количество
1	Предохранительный колпачок	ПЭ	1
2	Ручка	ПВХ	1
3	Винт	Нержавеющая сталь	1
4	Контршайба	Нержавеющая сталь	1
5	*Уплотнение шара	PTFE	2
6	Шар	ХПВХ	1
7	Корпус	ХПВХ	1
8	*Уплотнительное кольцо, опора прокладки 5	EPDM-FPM	2
9	*Уплотнительное кольцо, радиальное уплотнение	EPDM-FPM	1
10	*Уплотнительное кольцо, торцевое уплотнение	EPDM-FPM	2
11	Винт	Нержавеющая сталь	2
12	Муфта	ХПВХ	2
13	Гайка	ХПВХ	2
14	Контршайба	Нержавеющая сталь	2
15	Гайка	Нержавеющая сталь	2
16	Опора прокладки шара	ХПВХ	1
17	*Стопорное кольцо	ХПВХ	1
18	Прокладка (уплотнительное кольцо) штока	EPDM-FPM	4
19	*Антифрикционная шайба	PTFE	2
20	Верхний полушток	XПВХ / нержавеющая сталь	1
21	Нижний полушток	ХПВХ	1
22	Адаптор	PP-GR	1
23	Предохранительный колпачок	ПЭ	2
24	Пружина	Нержавеющая сталь	2
25	Устройство блокировки гаек	PP-GR	2
26	Крышка	ПП	1
27	Кнопка устройства блокировки гаек	PP-GR	1
28	Предохранительная заглушка	ПЭ	1
29	Винт	Найлон	2
30	** Крепежная зажимная втулка	Латунь	2
31	** Адаптор	PP-GR	1

*Запасные части

^{**}Комплектующие

Артикул

VKDDC ctp. 72

d	EPDM	FPM
75 90 110	VKDDC075E VKDDC090E VKDDC110E	VKDDC090F

VKDOC	стр. 73

d	EPDM	FPM
75	VKDOC075E	
90 110	VKDOC090E VKDOC110E	

VKDIC	стр. 72
-------	---------

d	EPDM	FPM
75	VKDIC075E	VKDIC075F
90	VKDIC090E	VKDIC090F
110	VKDIC110E	VKDIC110F

